libcppa
Type-safe Messaging Systems in C++

Dominik Charousset* and Thomas C. Schmidt*
dcharousset@acm.org, t.schmidt@ieee.org

*INET RG, Department of Computer Science
Hamburg University of Applied Sciences

May 2014 @C++Now2014

=

Hochschule fiir Angewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences

Agenda

Introduction
m Challenges of Scalable Software
m What the Standard Provides

Dominik Charousset iNET — HAW Hamburg

Challenges of Scalable Software

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms

Dominik Charousset iNET — HAW Hamburg 3

Challenges of Scalable Software

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms
m SIMD components: GPUs can vastly outperform CPUs

Dominik Charousset iNET — HAW Hamburg 3

Challenges of Scalable Software

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms
m SIMD components: GPUs can vastly outperform CPUs
m Cloud computing: “Infrastructure as a service”
m Internet-wide deployment

Dominik Charousset iNET — HAW Hamburg 3

Challenges of Scalable Software

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms
m SIMD components: GPUs can vastly outperform CPUs
m Cloud computing: “Infrastructure as a service”
m Internet-wide deployment
m Embedded HW & “The Internet of Things"

Dominik Charousset iNET — HAW Hamburg

Challenges of Scalable Software

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms
m SIMD components: GPUs can vastly outperform CPUs
m Cloud computing: “Infrastructure as a service”
m Internet-wide deployment
m Embedded HW & “The Internet of Things"
= Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET — HAW Hamburg 3

Raising the Level of Abstraction

Threads, Locks and Futures as found in the STL are not a sufficient
abstraction. We should be enabled to ...

m Easily split application logic into as many tasks as needed
m Avoid race conditions by design (no locks!)

m Compose large systems out of small components easily
m Keep interfaces between software components stable:

m Whether or not they run on the same host
m Whether or not they run on specialized hardware
= Flexible composition

Dominik Charousset iNET — HAW Hamburg

Raising the Level of Abstraction

Threads, Locks and Futures as found in the STL are not a sufficient
abstraction. We should be enabled to ...

m Easily split application logic into as many tasks as needed
m Avoid race conditions by design (no locks!)

m Compose large systems out of small components easily
m Keep interfaces between software components stable:

m Whether or not they run on the same host
m Whether or not they run on specialized hardware
= Flexible composition

All of these criteria are met by the actor model.

Dominik Charousset iNET — HAW Hamburg

Agenda

The Actor Model & libcppa
m Benefits
m Actors in C++11
m APl & Examples

Dominik Charousset iNET — HAW Hamburg

Benefits of the Actor Model

m High-level, explicit communication between SW components

m Robust software design: No locks, no implicit sharing
m High level of abstraction based on message passing

Dominik Charousset iNET — HAW Hamburg 6

Benefits of the Actor Model

m High-level, explicit communication between SW components

m Robust software design: No locks, no implicit sharing
m High level of abstraction based on message passing

m Abstraction over deployment

m Flexible & modular systems
m Managing heterogeneous environments (but not yet on HW level)

Dominik Charousset iNET — HAW Hamburg

Benefits of the Actor Model

m High-level, explicit communication between SW components

m Robust software design: No locks, no implicit sharing
m High level of abstraction based on message passing

m Abstraction over deployment

m Flexible & modular systems
m Managing heterogeneous environments (but not yet on HW level)

m Applies to both concurrency and distribution

m Divide workload by spawning actors
m Network-transparent messaging

Dominik Charousset iNET — HAW Hamburg

Benefits of the Actor Model

m High-level, explicit communication between SW components

m Robust software design: No locks, no implicit sharing
m High level of abstraction based on message passing

m Abstraction over deployment

m Flexible & modular systems
m Managing heterogeneous environments (but not yet on HW level)

m Applies to both concurrency and distribution

m Divide workload by spawning actors
m Network-transparent messaging

m Provides strong failure semantics

m Hierarchical error management
m Re-deployment at runtime

Dominik Charousset iNET — HAW Hamburg 6

Actors and Native Programming

m Actors have not yet entered the native programming domain

m Need to broaden range of applications
m Deploy actors in performance-critical systems

Dominik Charousset iNET — HAW Hamburg 7

Actors and Native Programming

m Actors have not yet entered the native programming domain

m Need to broaden range of applications
m Deploy actors in performance-critical systems

m Actor systems need to include heterogeneous hardware
m Integration of specialized HW components (GPGPU)

Dominik Charousset iNET — HAW Hamburg

Actors and Native Programming

m Actors have not yet entered the native programming domain

m Need to broaden range of applications
m Deploy actors in performance-critical systems

m Actor systems need to include heterogeneous hardware
m Integration of specialized HW components (GPGPU)
m Actor systems not available for embedded systems

m Why not model the “Internet of Things’ as network of actors?
m HW platform should not dictate programming model
m Portability & code re-use for developing loT applications

Dominik Charousset iNET — HAW Hamburg

Actors in C++11

m libcppa is an actor system based on C++11

Dominik Charousset iNET — HAW Hamburg

Actors in C++11

m libcppa is an actor system based on C++11
m Focus on efficiency

m Low memory footprint
m Fast, lock-free mailbox implementation

Dominik Charousset iNET — HAW Hamburg

Actors in C++11

m libcppa is an actor system based on C++11
m Focus on efficiency

m Low memory footprint
m Fast, lock-free mailbox implementation

m Targets both low-end and high-performance computing

m Embedded HW
m Multi-core systems

Dominik Charousset iNET — HAW Hamburg

Actors in C++11

m libcppa is an actor system based on C++11
m Focus on efficiency

m Low memory footprint
m Fast, lock-free mailbox implementation

m Targets both low-end and high-performance computing

m Embedded HW
m Multi-core systems

m Transparent integration of OpenCL-based actors

Dominik Charousset iNET — HAW Hamburg

Actors in C++11

m libcppa is an actor system based on C++11
m Focus on efficiency

m Low memory footprint
m Fast, lock-free mailbox implementation

m Targets both low-end and high-performance computing

m Embedded HW
m Multi-core systems

m Transparent integration of OpenCL-based actors

m Uses internal DSL for pattern matching of messages

Dominik Charousset iNET — HAW Hamburg 8

libcppa Core Architecture

Type System

Dominik Charousset iNET — HAW Hamburg

libcppa Core Architecture

Serialization Layer Pattern Matching Engine

Type System

Dominik Charousset iNET — HAW Hamburg

libcppa Core Architecture

Middleman OpenCL Binding

Serialization Layer Pattern Matching Engine

Cooperative Scheduler
Type System

Dominik Charousset iNET — HAW Hamburg

libcppa Core Architecture

Proxy Actor OpenCL Actor Facade
Local (CPU) Actor
Middleman OpenCL Binding
Serialization Layer Pattern Matching Engine

Cooperative Scheduler
Type System

Dominik Charousset iNET — HAW Hamburg

libcppa Core Architecture

]
| Message Passing Layer
1

A \d \4
Proxy Actor OpenCL Actor Facade
Local (CPU) Actor
Middleman OpenCL Binding
Serialization Layer Pattern Matching Engine

Cooperative Scheduler
Type System

Dominik Charousset iNET — HAW Hamburg

libcppa Core Architecture

]
| Message Passing Layer
1

A A\ A\

Proxy Actor QOpenCL Actor Facade

\\ Local (CPU) Actor

Managed completely . .
by middleman g Eghite

Cooperative Scheduler

Dominik Charousset iNET — HAW Hamburg

libcppa Core Architecture

]
| Message Passing Layer
1

A \ 4 \ 4
Proxy Actor OpenCL Actor Fac:
Local (CPU) Actor
Ricdienay Opethed by using
spawn_cl<Signature>(
Serialization Layer kernel_source,
kernel_name, Cooperative Scheduler
dimensions);
Type S

Dominik Charousset iNET — HAW Hamburg

libcppa Core Architecture

]
| Message Passing Layer
1

A A\ A\

Proxy Actor OpenCL Actor Facade

Local (CPU) Actor

Middleman OpenCL Bin/diur/
Crated by using one of:

Serialization Layer spawn(fun, args....);
spawn<Impl>(ctor_args...);

Cooperative Scheduler
Type System

Dominik Charousset iNET — HAW Hamburg

API| — Creating Actors

// args: constructor arguments for Impl
template<class Impl,

spawn_options Os = no_spawn_options,
typename... Ts>
actor spawn(Ts&&... args);

// args: functor followed by its arguments

template<spawn_options Os = no_spawn_options,
typename... Ts>
actor spawn(Ts&&... args);

m Create actors from either functors or classes

m Spawn options can be used for monitoring, detaching, etc.

m Creates event-based actors per default

Dominik Charousset iNET — HAW Hamburg

10

APl — Event-based Actor Class

class event_based_actor : ... {

template<typename... Ts>
void send(actor whom, Ts&&... what);

template<typename... Ts>

response_handle sync_send(actor whom, Ts&&...

void become (behavior bhvr);
void quit(uint32_t reason);
//

};

m Base for class-based actors
m Type of implicit se1f pointer for functor-based actors

Dominik Charousset iNET — HAW Hamburg

what) ;

11

APl — Remote Communication

// makes actor accessible via network
void publish(actor whom, uintl6_t port);

// get handle to remotely running actor
actor remote_actor (std::string host, uintl6_t port);

m Message passing is network transparent
m Both local and remote actors use handles of type actor

m Network primitives not exposed to programmer

Dominik Charousset iNET — HAW Hamburg

12

Example

behavior math_server () {
return {
[I1(int a, int b) {
return a + b;
}
};
}
void math_client (event_based_actor* self, actor ms)
self ->sync_send(ms, 40, 2).then(
[=] (int result) {
cout << "40 + 2 = " << result << endl;
}
);
}

// spawn(math_client, spawn(math_server));

Dominik Charousset iNET — HAW Hamburg

Example

behavior math_server () {
return {
int a, int b) {
resurn a + b;

3

} .

} return message handler for

voi{ incoming messages (used until | self, actor ms) {
s replaced or actor is done)

cout << "40 + 2 = " << result << endl;
}
)
}

// spawn(math_client, spawn(math_server));

Dominik Charousset iNET — HAW Hamburg

13

Example

behavior math server () {

return [send a message and then
He wait for response
} (using a "one-shot handler")

};
}
void math_clAent (event_based_agtor* self,
self ->sync_send(ms, 40, 2).then
[=] (int result) {

actor ms) {

cout << "40 + 2 = " << result << endl;

¥
)
}

// spawn(math_client, spawn(math_server));

Dominik Charousset iNET — HAW Hamburg

13

Example

behavior math_server () {
return {
[1(int a, int b) {
return a +\b;
}
} this actor "loops" forever
vo (or until it is forced to quit) self,

=] (10t resualt) 1
cout << "40 + 2
}
);
}
// spawn(math_client,

Dominik Charousset

actor ms) {

= " << result << endl;

spawn (math_server));

iNET — HAW Hamburg

13

Example

be 1 AR\ L
this actor sends one
message and receives one
messages
};
}

void math_client (event_based_actor* self, actor ms) {
self ->sync_send (ms, 40, 2).then(
[=] (int result) {
cout << "40 + 2 = " << result << endl;
}
);
}

// spawn(math_client, spawn(math_server));

Dominik Charousset iNET — HAW Hamburg

13

Example

behavior math_server () {
return {
[1(int a, int b) {
return a + b;
}
};
}
voi) r*x self, actor ms)
s spawn server & client (
Wlt << endl;
}
);
}

// spawn(math_client,

Dominik Charousset

spawn (math_server));

iNET — HAW Hamburg

13

APl — Type Safety

All functions are available as typed version
Strongly typed actors use handles of type typed_actor<...>

Interface is defined using replies_to<...>::with<...> notation

Messaging to/from typed actors fully checked at compile time

Dominik Charousset iNET — HAW Hamburg

14

APl — Typed Actor Handles

Typed actor handles can be assigned to subtypes (even remote!):

using atypel = typed_actor<replies_to<int>::with<int>,
replies_to<float>::with<float>>;
using atype2 = typed_actor<replies_to<int>::with<int>>;

atypel al = spawn_typed(...);
atype2 a2 al; // assign to subtype

Dominik Charousset iNET — HAW Hamburg

15

APl — Typed Example

using math_t = typed_actor<replies_to<int,int>::with<int>>;

math_t::behavior_type math_server () {
return {
[J(int a, int b) {
return a + b;
}
};
}
void math_client (event_based_actor* self, math_t ms)
self ->sync_send(ms, 40, 2).then(
[=] (int result) {
cout << "40 + 2 = " << result << endl;
}
)
}

// spawn(math_client, spawn_typed(math_server));

Dominik Charousset iNET — HAW Hamburg

16

APl — Typed Example

using math_t = typed_actor<replies_to<int,int>::with<int>>;

math_t::behavior_type math_segver () {
return {
[1(int a, int b) {
return a +

. ¥ typedef with interface definition
y for convenience

void math_client - - - ms) {
self ->sync_send(ms, 40, 2).then(
[=] (int result) {
cout << "40 + 2 = " << result << endl;
}
)

}
// spawn(math_client, spawn_typed(math_server));

Dominik Charousset iNET — HAW Hamburg

16

APl — Typed Example

using math_t = typed_actor<replies_to<int,int>::with<int>>;
math_t::behavior_type math_server () {
returm {
[J(int\a, int b) {
returm\a + b;

types of message handlers
must match interface definition

Vo * self, math_t ms) {

[=] (int result) {
cout << "40 + 2 = " << result << endl;
}
)
}

// spawn(math_client, spawn_typed(math_server));

Dominik Charousset iNET — HAW Hamburg 16

APl — Typed Example

using math_t = typed_actor<replies_to<int,int>::with<int>>;
math_t::behavior_type =
return {

: . messages to ms now
[I(int a, int Db) {
return a + b; type-checked

}
};
}
void math_client (event_based_actor* self, math_t ms) {
self ->sync_send(ms, 40, 2).then(
[=] (int result) {
cout << "40 + 2 = " << result << endl;
}
)

}

// spawn(math_client, spawn_typed(math_server));

Dominik Charousset iNET — HAW Hamburg

16

APl — Monitoring Example

behavior worker(); // sometimes fails

behavior master (event_based_actor* self) {
auto w = self->spawn<monitored>(worker);
return {
[=] (int a, int b) {
self ->send(w, a, b);
1,
[=] (const down_msg& msg) {
if (msg.source == w) {
// start a new worker
self ->become (master (self));

Dominik Charousset iNET — HAW Hamburg

17

Agenda

Actors vs Threads

Dominik Charousset

iNET — HAW Hamburg

18

Actors vs Threads

Matrix multiplication as scaling behavior showcase:

m Large number of independent tasks
m Can make use of C++11's async
m Simple to port algorithm to GPU (because: why not?)

Dominik Charousset iNET — HAW Hamburg 19

Multiply Matrices — Matrix Class

static constexpr size_t matrix_size = /*...x%x/;

// always rows == columns == matrix_size

class matrix {

public:
float& operator () (size_t row, size_t column);
const vector<float>& data() const;
//

private:
vector<float> m_data; // glorified vector

};

Dominik Charousset iNET — HAW Hamburg

20

Multiply Matrices — Simple Loop

matrix simple_multiply(const matrix& 1lhs,

const matrix& rhs) {
matrix result;

for (size_t r = 0; r < matrix_size; ++r) {

for (size_t ¢ = 0; ¢ < matrix_size; ++c) {
result(r, c) = dot_product(lhs, rhs, r,

}

}

return move (result);

}
Dominik Charousset iNET — HAW Hamburg

c);

21

Multiply Matrices — std: :async

matrix async_multiply(const matrix& 1lhs,
const matrix& rhs) {
matrix result;
vector<future<void>> futures;
futures.reserve(matrix_size * matrix_size);
for (size_t r = 0; r < matrix_size; ++r) {
for (size_t ¢ = 0; ¢ < matrix_size; ++c)
futures.push_back(async(launch::async,
result(r, c) = dot_product(lhs, rhs,
13D

}
for (auto& f : futures) f.wait();
return move (result);

}

Dominik Charousset iNET — HAW Hamburg

{
[&,r,c] {
r, c);

22

Multiply Matrices — 1ibcppa Actors

matrix actor_multiply(const matrix& lhs,
const matrix& rhs) {
matrix result;
for (size_t r = 0
for (size_t c =
spawn ([&,r,c]
result(r, c

)

; ¥ < matrix_size; ++r) {
0; ¢ < matrix_size; ++c) {
{

) = dot_product(lhs, rhs, r, c);
}
await_all_actors_done ();

return move (result);

}

Dominik Charousset iNET — HAW Hamburg

23

Multiply Matrices — OpenCL Actors

static constexpr const char* source = R"__(
__kernel void multiply(__global float* lhs,

__global float* rhs,
__global float* result) {

size_t size = get_global_size (0);

size_t r = get_global_id (0);

size_t ¢ = get_global_id(1);

float dot_product = 0;

for (size_t k = 0; k < size; ++k)

dot_product += lhs[k+cxsize] * rhs[r+k*size];

result [r+c*size] = dot_product;

Y__";

Dominik Charousset iNET — HAW Hamburg

24

Multiply Matrices — OpenCL Actors

matrix opencl_multiply(const matrix& 1lhs,
const matrix& rhs) {

using fvec = vector<float>;
using cfvec = const fveck;
// function signature
auto worker = spawn_cl<fvec (cfvec, cfvec)>(
// code, kernel name & dimensions
source, "multiply",

{matrix_size, matrix_sizel});
scoped_actor self;
self ->send (worker, lhs.data(), rhs.data());
matrix result;
self ->receive ([&] (fvec& res_vec) {
result = move(res_vec);
s

return move (result);

Dominik Charousset iNET — HAW Hamburg

25

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
Om9.029s

Dominik Charousset iNET — HAW Hamburg

26

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
Om9.029s

time ./actor_multiply
Oml.164s

Dominik Charousset iNET — HAW Hamburg

26

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
Om9.029s

time ./actor_multiply
Oml.164s

time ./opencl_multiply
Om0.288s

Dominik Charousset iNET — HAW Hamburg

26

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
Om9.029s

time ./actor_multiply
Oml.164s

time ./opencl_multiply
O0mO0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’
what(): Resource temporarily unavailable

Dominik Charousset iNET — HAW Hamburg

26

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
Om9.029s

time ./actor_multiply
Oml.164s

time ./opencl_multiply
O0mO0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’
what(): Resource temporarily unavailable

. apparently, std: :async is syntactic sugar for starting threads

Dominik Charousset iNET — HAW Hamburg

26

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
Om9.029s

time ./actor_multiply
Oml.164s

time ./opencl_multiply
O0mO0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’
what(): Resource temporarily unavailable

. apparently, std: :async is syntactic sugar for starting threads
. and one cannot start 1,000,000 threads

Dominik Charousset iNET — HAW Hamburg

26

Multiply Matrices — Summary

m Threads do not scale up to large numbers, actors do
m Spawning actors is fast

m A million actors in <1.1s
m Approach ideal speedup despite spawning > 80k actors per CPU

m Yes, porting algorithms to GPUs is indeed worthwhile

m Speedup is ludicrous
m Shouldn't surprise anybody

Dominik Charousset iNET — HAW Hamburg

27

Agenda

Performance Evaluation
m Overhead of Actor Creation
m Performance of N:1 Communication
m Performance in a Mixed Scenario
m Scaling Behavior of Message Passing

Dominik Charousset iNET — HAW Hamburg

28

Measurements

Benchmarks are based on the following implementations:

libcppa C++ (GCC 4.8.1) with libcppa
scala Scala 2.10 with the Akka library
erlang Erlang 5.10.2

System setup:
m Four 16-core AMD Opteron 2299 MHz
m JVM configured with a maximum of 10 GB of RAM
m We vary the number of CPU cores from 4 to 64

Dominik Charousset iNET — HAW Hamburg 29

Overhead of Actor Creation

m Fork/join workflow to compute 2V

m Each fork step spawns two new actors
m Join step sums up messages from children
m Each actor at the leaf sends 1 to parent

m Benchmark creates ~ 1,000,000 actors (N = 20)

Dominik Charousset iNET — HAW Hamburg

30

Overhead of Actor Creation

10 T T T T T T T T T T T T T T
94 —/\—erlang -
—/—scala
8- —>—libcppa

Time [s]

14 o - - 4

0 T T T T T T T T T T T T T T
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of Cores [#]

m All three implementations scale up to large actor systems
m libcppa performs best: 1M actors in < 1s for 8 or more cores

Dominik Charousset iNET — HAW Hamburg

Performance of 1:N Communication

m 100 senders transmitting 100k messages each to a single receiver
m Stresses performance of receive for central actors

m More HW concurrency adds more collisions on receiver mailbox

Dominik Charousset iNET — HAW Hamburg 32

Performance of N:1 Communication

100 T T T T T T T T T T T T T T

904 —>—erlang

—/— scala
—x— libcppa

80

Time [s]

T T T T T T T T T T
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of Cores [#]

m Runtime increases significantly for Erlang and Scala
m libcppa remains almost constant

Dominik Charousset iNET — HAW Hamburg

33

Performance in a Mixed Scenario

m Mixed operations under work load

m 100 rings of 50 actors each

m Token-forwarding on each ring until 1k iterations are reached
m 5 re-creations per ring

m One prime factorization per (re)-created ring to add work load

m Doubling the number of cores should (nearly) halve the runtime

Dominik Charousset iNET — HAW Hamburg

34

Performance in a Mixed Scenario

400 T T T T T T T T T T T
—/\— erlang

3504 —/—scala |
—*— libcppa

300 R

T T T T T T T T T T T T T
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of Cores [#]

m Tail-recursive prime factorization in Scala as fast as in C++
m libcppa on 64 cores still ~20 % faster

Dominik Charousset iNET — HAW Hamburg

Scaling Behavior of Message Passing

m Calculate images of the Mandelbrot set in C++
m Distributed using (1) 1ibcppa and (2) OpenMPI

m Same source code for calculation
m Only the message passing layers differ

Dominik Charousset iNET — HAW Hamburg

36

Scaling Behavior of Message Passing

3500 T T T T T T T T T T

—%—libcppa
3000 + —O— OpenMPI

2500 4 q
2000 q

1500 q

Time [s]

1000 1

500 q

0 T T T T T T T T T T

3 6 9 12 15 18 21 24 27 30 33 36
Number of Workers [#]

m Both implementations exhibit equal scaling behavior
m Doubling the number of worker nodes halves the runtime
m libcppa 20-30s faster, despite higher level of abstraction

Dominik Charousset iNET — HAW Hamburg

37

Agenda

Conclusion

Dominik Charousset

iNET — HAW Hamburg

38

Conclusion

m libcppa performs uniformly well

Dominik Charousset iNET — HAW Hamburg

39

Conclusion

m libcppa performs uniformly well
m Broaden range of applications of the actor model

m Support for GPGPU programming by integrating OpenCL
m Small memory footprint & efficient program execution

Dominik Charousset iNET — HAW Hamburg

39

Conclusion

m libcppa performs uniformly well
m Broaden range of applications of the actor model

m Support for GPGPU programming by integrating OpenCL
m Small memory footprint & efficient program execution

m Native C++ actor system

m Pattern Matching for messages as internal DSL
m High level of abstraction without sacrificing performance

Dominik Charousset iNET — HAW Hamburg

39

Conclusion

libcppa performs uniformly well

Broaden range of applications of the actor model

m Support for GPGPU programming by integrating OpenCL
m Small memory footprint & efficient program execution

Native C++ actor system

m Pattern Matching for messages as internal DSL
m High level of abstraction without sacrificing performance

Currently ported to RIOT-os! for embedded HW support

"http://www.riot-os.org/

Dominik Charousset iNET — HAW Hamburg

39

http://www.riot-os.org/

libcppa Facts Sheet

m Open source (GPLv2) C++11 actor library

m Runs on GCC > 4.7, Clang > 3.2 (Linux + Mac)

m Will run on MSVC once it is C++411 complete (runs on MinGW)
m Hosted on GitHub

m Feedback & contributions always welcome!

m Hot topics in the iNET group:

m Actors on ARM / embedded systems
m Actors & publish/subscribe (multicast)
m Message routing & composability

Dominik Charousset iNET — HAW Hamburg

40

libcppa Facts Sheet

m Open source (GPLv2) C++11 actor library

m Runs on GCC > 4.7, Clang > 3.2 (Linux + Mac)

m Will run on MSVC once it is C++411 complete (runs on MinGW)
m Hosted on GitHub

m Feedback & contributions always welcome!

m Hot topics in the iNET group:

m Actors on ARM / embedded systems
m Actors & publish/subscribe (multicast)
m Message routing & composability

m Currently in (preliminary) submission process to Boost!

Dominik Charousset iNET — HAW Hamburg

40

Thank you for your attention!

Developer blog: http://libcppa.org
Sources: https://github.com/Neverlord/libcppa

iNET working group: http://inet.cpt.haw-hamburg.de

Dominik Charousset iNET — HAW Hamburg

41

	Introduction
	Challenges of Scalable Software
	What the Standard Provides

	The Actor Model & libcppa
	Benefits
	Actors in C++11
	API & Examples

	Actors vs Threads
	Performance Evaluation
	Overhead of Actor Creation
	Performance of N:1 Communication
	Performance in a Mixed Scenario
	Scaling Behavior of Message Passing

	Conclusion

