
libcppa
Type-safe Messaging Systems in C++

Dominik Charousset∗ and Thomas C. Schmidt∗

dcharousset@acm.org, t.schmidt@ieee.org

∗iNET RG, Department of Computer Science
Hamburg University of Applied Sciences

May 2014 @C++Now2014

Agenda

1 Introduction
Challenges of Scalable Software
What the Standard Provides

2 The Actor Model & libcppa
Benefits
Actors in C++11
API & Examples

3 Actors vs Threads
4 Performance Evaluation

Overhead of Actor Creation
Performance of N:1 Communication
Performance in a Mixed Scenario
Scaling Behavior of Message Passing

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 2

Challenges of Scalable Software

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms

SIMD components: GPUs can vastly outperform CPUs
Cloud computing: “Infrastructure as a service”
Internet-wide deployment
Embedded HW & “The Internet of Things”

⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 3

Challenges of Scalable Software

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
SIMD components: GPUs can vastly outperform CPUs

Cloud computing: “Infrastructure as a service”
Internet-wide deployment
Embedded HW & “The Internet of Things”

⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 3

Challenges of Scalable Software

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
SIMD components: GPUs can vastly outperform CPUs
Cloud computing: “Infrastructure as a service”
Internet-wide deployment

Embedded HW & “The Internet of Things”
⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 3

Challenges of Scalable Software

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
SIMD components: GPUs can vastly outperform CPUs
Cloud computing: “Infrastructure as a service”
Internet-wide deployment
Embedded HW & “The Internet of Things”

⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 3

Challenges of Scalable Software

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
SIMD components: GPUs can vastly outperform CPUs
Cloud computing: “Infrastructure as a service”
Internet-wide deployment
Embedded HW & “The Internet of Things”

⇒ Heterogeneous platforms, concurrency & distribution

Dominik Charousset iNET – HAW Hamburg 3

Raising the Level of Abstraction

Threads, Locks and Futures as found in the STL are not a sufficient
abstraction. We should be enabled to ...

Easily split application logic into as many tasks as needed
Avoid race conditions by design (no locks!)
Compose large systems out of small components easily
Keep interfaces between software components stable:

Whether or not they run on the same host
Whether or not they run on specialized hardware

⇒ Flexible composition

All of these criteria are met by the actor model.

Dominik Charousset iNET – HAW Hamburg 4

Raising the Level of Abstraction

Threads, Locks and Futures as found in the STL are not a sufficient
abstraction. We should be enabled to ...

Easily split application logic into as many tasks as needed
Avoid race conditions by design (no locks!)
Compose large systems out of small components easily
Keep interfaces between software components stable:

Whether or not they run on the same host
Whether or not they run on specialized hardware

⇒ Flexible composition

All of these criteria are met by the actor model.

Dominik Charousset iNET – HAW Hamburg 4

Agenda

1 Introduction
Challenges of Scalable Software
What the Standard Provides

2 The Actor Model & libcppa
Benefits
Actors in C++11
API & Examples

3 Actors vs Threads
4 Performance Evaluation

Overhead of Actor Creation
Performance of N:1 Communication
Performance in a Mixed Scenario
Scaling Behavior of Message Passing

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 5

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction based on message passing

Abstraction over deployment
Flexible & modular systems
Managing heterogeneous environments (but not yet on HW level)

Applies to both concurrency and distribution
Divide workload by spawning actors
Network-transparent messaging

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 6

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction based on message passing

Abstraction over deployment
Flexible & modular systems
Managing heterogeneous environments (but not yet on HW level)

Applies to both concurrency and distribution
Divide workload by spawning actors
Network-transparent messaging

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 6

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction based on message passing

Abstraction over deployment
Flexible & modular systems
Managing heterogeneous environments (but not yet on HW level)

Applies to both concurrency and distribution
Divide workload by spawning actors
Network-transparent messaging

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 6

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction based on message passing

Abstraction over deployment
Flexible & modular systems
Managing heterogeneous environments (but not yet on HW level)

Applies to both concurrency and distribution
Divide workload by spawning actors
Network-transparent messaging

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 6

Actors and Native Programming

Actors have not yet entered the native programming domain
Need to broaden range of applications
Deploy actors in performance-critical systems

Actor systems need to include heterogeneous hardware
Integration of specialized HW components (GPGPU)

Actor systems not available for embedded systems
Why not model the “Internet of Things” as network of actors?
HW platform should not dictate programming model
Portability & code re-use for developing IoT applications

Dominik Charousset iNET – HAW Hamburg 7

Actors and Native Programming

Actors have not yet entered the native programming domain
Need to broaden range of applications
Deploy actors in performance-critical systems

Actor systems need to include heterogeneous hardware
Integration of specialized HW components (GPGPU)

Actor systems not available for embedded systems
Why not model the “Internet of Things” as network of actors?
HW platform should not dictate programming model
Portability & code re-use for developing IoT applications

Dominik Charousset iNET – HAW Hamburg 7

Actors and Native Programming

Actors have not yet entered the native programming domain
Need to broaden range of applications
Deploy actors in performance-critical systems

Actor systems need to include heterogeneous hardware
Integration of specialized HW components (GPGPU)

Actor systems not available for embedded systems
Why not model the “Internet of Things” as network of actors?
HW platform should not dictate programming model
Portability & code re-use for developing IoT applications

Dominik Charousset iNET – HAW Hamburg 7

Actors in C++11

libcppa is an actor system based on C++11

Focus on efficiency
Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Transparent integration of OpenCL-based actors
Uses internal DSL for pattern matching of messages

Dominik Charousset iNET – HAW Hamburg 8

Actors in C++11

libcppa is an actor system based on C++11
Focus on efficiency

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Transparent integration of OpenCL-based actors
Uses internal DSL for pattern matching of messages

Dominik Charousset iNET – HAW Hamburg 8

Actors in C++11

libcppa is an actor system based on C++11
Focus on efficiency

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Transparent integration of OpenCL-based actors
Uses internal DSL for pattern matching of messages

Dominik Charousset iNET – HAW Hamburg 8

Actors in C++11

libcppa is an actor system based on C++11
Focus on efficiency

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Transparent integration of OpenCL-based actors

Uses internal DSL for pattern matching of messages

Dominik Charousset iNET – HAW Hamburg 8

Actors in C++11

libcppa is an actor system based on C++11
Focus on efficiency

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Transparent integration of OpenCL-based actors
Uses internal DSL for pattern matching of messages

Dominik Charousset iNET – HAW Hamburg 8

libcppa Core Architecture

Type System

Dominik Charousset iNET – HAW Hamburg 9

libcppa Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Dominik Charousset iNET – HAW Hamburg 9

libcppa Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Dominik Charousset iNET – HAW Hamburg 9

libcppa Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Dominik Charousset iNET – HAW Hamburg 9

libcppa Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Message Passing Layer

Proxy Actor
Local (CPU) Actor

Cooperative Scheduler

OpenCL Actor Facade

OpenCL Binding

Dominik Charousset iNET – HAW Hamburg 9

libcppa Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Managed completely
by middleman

Dominik Charousset iNET – HAW Hamburg 9

libcppa Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Crated by using
spawn_cl<Signature>(

kernel_source,
kernel_name,
dimensions);

Dominik Charousset iNET – HAW Hamburg 9

libcppa Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Crated by using one of:
spawn(fun, args…);

spawn<Impl>(ctor_args…);

Dominik Charousset iNET – HAW Hamburg 9

API – Creating Actors

// args: constructor arguments for Impl
template <class Impl ,

spawn_options Os = no_spawn_options ,
typename ... Ts>

actor spawn(Ts&&... args);

// args: functor followed by its arguments
template <spawn_options Os = no_spawn_options ,

typename ... Ts>
actor spawn(Ts&&... args);

Create actors from either functors or classes
Spawn options can be used for monitoring, detaching, etc.
Creates event-based actors per default

Dominik Charousset iNET – HAW Hamburg 10

API – Event-based Actor Class

class event_based_actor : ... {

template <typename ... Ts>
void send(actor whom , Ts&&... what);

template <typename ... Ts>
response_handle sync_send(actor whom , Ts &&... what);

void become(behavior bhvr);

void quit(uint32_t reason);

// ...

};

Base for class-based actors
Type of implicit self pointer for functor-based actors

Dominik Charousset iNET – HAW Hamburg 11

API – Remote Communication

// makes actor accessible via network
void publish(actor whom , uint16_t port);

// get handle to remotely running actor
actor remote_actor(std:: string host , uint16_t port);

Message passing is network transparent
Both local and remote actors use handles of type actor

Network primitives not exposed to programmer

Dominik Charousset iNET – HAW Hamburg 12

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

Dominik Charousset iNET – HAW Hamburg 13

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

return message handler for
incoming messages (used until

replaced or actor is done)

Dominik Charousset iNET – HAW Hamburg 13

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

send a message and then
wait for response

 (using a "one-shot handler")

Dominik Charousset iNET – HAW Hamburg 13

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

this actor "loops" forever
(or until it is forced to quit)

Dominik Charousset iNET – HAW Hamburg 13

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

this actor sends one
message and receives one

messages

Dominik Charousset iNET – HAW Hamburg 13

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

spawn server & client

Dominik Charousset iNET – HAW Hamburg 13

API – Type Safety

All functions are available as typed version
Strongly typed actors use handles of type typed_actor<...>

Interface is defined using replies_to<...>::with<...> notation
Messaging to/from typed actors fully checked at compile time

Dominik Charousset iNET – HAW Hamburg 14

API – Typed Actor Handles

Typed actor handles can be assigned to subtypes (even remote!):

using atype1 = typed_actor <replies_to <int >::with <int >,
replies_to <float >::with <float >>;

using atype2 = typed_actor <replies_to <int >::with <int >>;

atype1 a1 = spawn_typed (...);
atype2 a2 = a1; // assign to subtype

Dominik Charousset iNET – HAW Hamburg 15

API – Typed Example

using math_t = typed_actor <replies_to <int ,int >::with <int >>;
math_t :: behavior_type math_server () {

return {
[](int a, int b) {

return a + b;
}

};
}
void math_client(event_based_actor* self , math_t ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn_typed(math_server));

Dominik Charousset iNET – HAW Hamburg 16

API – Typed Example

using math_t = typed_actor <replies_to <int ,int >::with <int >>;
math_t :: behavior_type math_server () {

return {
[](int a, int b) {

return a + b;
}

};
}
void math_client(event_based_actor* self , math_t ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn_typed(math_server));

typedef with interface definition
for convenience

Dominik Charousset iNET – HAW Hamburg 16

API – Typed Example

using math_t = typed_actor <replies_to <int ,int >::with <int >>;
math_t :: behavior_type math_server () {

return {
[](int a, int b) {

return a + b;
}

};
}
void math_client(event_based_actor* self , math_t ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn_typed(math_server));

types of message handlers
must match interface definition

Dominik Charousset iNET – HAW Hamburg 16

API – Typed Example

using math_t = typed_actor <replies_to <int ,int >::with <int >>;
math_t :: behavior_type math_server () {

return {
[](int a, int b) {

return a + b;
}

};
}
void math_client(event_based_actor* self , math_t ms) {

self ->sync_send(ms , 40, 2). then(
[=](int result) {

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn_typed(math_server));

messages to ms now
type-checked

Dominik Charousset iNET – HAW Hamburg 16

API – Monitoring Example

behavior worker (); // sometimes fails

behavior master(event_based_actor* self) {
auto w = self ->spawn <monitored >(worker);
return {

[=](int a, int b) {
self ->send(w, a, b);

},
[=](const down_msg& msg) {

if (msg.source == w) {
// start a new worker
self ->become(master(self));

}
}

};
}

Dominik Charousset iNET – HAW Hamburg 17

Agenda

1 Introduction
Challenges of Scalable Software
What the Standard Provides

2 The Actor Model & libcppa
Benefits
Actors in C++11
API & Examples

3 Actors vs Threads
4 Performance Evaluation

Overhead of Actor Creation
Performance of N:1 Communication
Performance in a Mixed Scenario
Scaling Behavior of Message Passing

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 18

Actors vs Threads

Matrix multiplication as scaling behavior showcase:

Large number of independent tasks
Can make use of C++11’s async

Simple to port algorithm to GPU (because: why not?)

Dominik Charousset iNET – HAW Hamburg 19

Multiply Matrices – Matrix Class

static constexpr size_t matrix_size = /*...*/;

// always rows == columns == matrix_size
class matrix {
public:
float& operator ()(size_t row , size_t column);
const vector <float >& data() const;
// ...

private:
vector <float > m_data; // glorified vector

};

Dominik Charousset iNET – HAW Hamburg 20

Multiply Matrices – Simple Loop

matrix simple_multiply(const matrix& lhs ,
const matrix& rhs) {

matrix result;
for (size_t r = 0; r < matrix_size; ++r) {

for (size_t c = 0; c < matrix_size; ++c) {
result(r, c) = dot_product(lhs , rhs , r, c);

}
}
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 21

Multiply Matrices – std::async

matrix async_multiply(const matrix& lhs ,
const matrix& rhs) {

matrix result;
vector <future <void >> futures;
futures.reserve(matrix_size * matrix_size);
for (size_t r = 0; r < matrix_size; ++r) {

for (size_t c = 0; c < matrix_size; ++c) {
futures.push_back(async(launch ::async , [&,r,c] {

result(r, c) = dot_product(lhs , rhs , r, c);
}));

}
}
for (auto& f : futures) f.wait ();
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 22

Multiply Matrices – libcppa Actors

matrix actor_multiply(const matrix& lhs ,
const matrix& rhs) {

matrix result;
for (size_t r = 0; r < matrix_size; ++r) {

for (size_t c = 0; c < matrix_size; ++c) {
spawn([&,r,c] {

result(r, c) = dot_product(lhs , rhs , r, c);
});

}
}
await_all_actors_done ();
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 23

Multiply Matrices – OpenCL Actors

static constexpr const char* source = R"__(
__kernel void multiply(__global float* lhs ,

__global float* rhs ,
__global float* result) {

size_t size = get_global_size (0);
size_t r = get_global_id (0);
size_t c = get_global_id (1);
float dot_product = 0;
for (size_t k = 0; k < size; ++k)

dot_product += lhs[k+c*size] * rhs[r+k*size];
result[r+c*size] = dot_product;

}
)__";

Dominik Charousset iNET – HAW Hamburg 24

Multiply Matrices – OpenCL Actors

matrix opencl_multiply(const matrix& lhs ,
const matrix& rhs) {

using fvec = vector <float >;
using cfvec = const fvec&;

// function signature
auto worker = spawn_cl <fvec (cfvec , cfvec)>(

// code , kernel name & dimensions
source , "multiply",
{matrix_size , matrix_size });

scoped_actor self;
self ->send(worker , lhs.data(), rhs.data ());
matrix result;
self ->receive ([&](fvec& res_vec) {

result = move(res_vec);
});
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 25

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m1.164s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, std::async is syntactic sugar for starting threads

... and one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 26

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m1.164s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, std::async is syntactic sugar for starting threads

... and one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 26

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m1.164s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, std::async is syntactic sugar for starting threads

... and one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 26

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m1.164s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, std::async is syntactic sugar for starting threads

... and one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 26

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m1.164s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, std::async is syntactic sugar for starting threads

... and one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 26

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.8, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m1.164s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, std::async is syntactic sugar for starting threads

... and one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 26

Multiply Matrices – Summary

Threads do not scale up to large numbers, actors do
Spawning actors is fast

A million actors in ≤ 1.1 s
Approach ideal speedup despite spawning > 80k actors per CPU

Yes, porting algorithms to GPUs is indeed worthwhile
Speedup is ludicrous
Shouldn’t surprise anybody

Dominik Charousset iNET – HAW Hamburg 27

Agenda

1 Introduction
Challenges of Scalable Software
What the Standard Provides

2 The Actor Model & libcppa
Benefits
Actors in C++11
API & Examples

3 Actors vs Threads
4 Performance Evaluation

Overhead of Actor Creation
Performance of N:1 Communication
Performance in a Mixed Scenario
Scaling Behavior of Message Passing

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 28

Measurements

Benchmarks are based on the following implementations:

libcppa C++ (GCC 4.8.1) with libcppa
scala Scala 2.10 with the Akka library

erlang Erlang 5.10.2

System setup:
Four 16-core AMD Opteron 2299MHz
JVM configured with a maximum of 10GB of RAM
We vary the number of CPU cores from 4 to 64

Dominik Charousset iNET – HAW Hamburg 29

Overhead of Actor Creation

Fork/join workflow to compute 2N

Each fork step spawns two new actors
Join step sums up messages from children
Each actor at the leaf sends 1 to parent

Benchmark creates ≈ 1,000,000 actors (N = 20)

Dominik Charousset iNET – HAW Hamburg 30

Overhead of Actor Creation

4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8 5 2 5 6 6 0 6 4
0
1
2
3
4
5
6
7
8
9

1 0

Tim
e [

s]

N u m b e r o f C o r e s [#]

 e r l a n g
 s c a l a
 l i b c p p a

All three implementations scale up to large actor systems
libcppa performs best: 1M actors in ≤ 1 s for 8 or more cores

Dominik Charousset iNET – HAW Hamburg 31

Performance of 1:N Communication

100 senders transmitting 100k messages each to a single receiver
Stresses performance of receive for central actors
More HW concurrency adds more collisions on receiver mailbox

Dominik Charousset iNET – HAW Hamburg 32

Performance of N:1 Communication

4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8 5 2 5 6 6 0 6 4
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Tim
e [

s]

N u m b e r o f C o r e s [#]

 e r l a n g
 s c a l a
 l i b c p p a

Runtime increases significantly for Erlang and Scala
libcppa remains almost constant

Dominik Charousset iNET – HAW Hamburg 33

Performance in a Mixed Scenario

Mixed operations under work load
100 rings of 50 actors each
Token-forwarding on each ring until 1k iterations are reached
5 re-creations per ring
One prime factorization per (re)-created ring to add work load
Doubling the number of cores should (nearly) halve the runtime

Dominik Charousset iNET – HAW Hamburg 34

Performance in a Mixed Scenario

4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8 5 2 5 6 6 0 6 4
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

Tim
e [

s]

N u m b e r o f C o r e s [#]

 e r l a n g
 s c a l a
 l i b c p p a

Tail-recursive prime factorization in Scala as fast as in C++
libcppa on 64 cores still ≈ 20% faster

Dominik Charousset iNET – HAW Hamburg 35

Scaling Behavior of Message Passing

Calculate images of the Mandelbrot set in C++
Distributed using (1) libcppa and (2) OpenMPI

Same source code for calculation
Only the message passing layers differ

Dominik Charousset iNET – HAW Hamburg 36

Scaling Behavior of Message Passing

3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 3 3 3 6
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

Tim
e [

s]

N u m b e r o f W o r k e r s [#]

 l i b c p p a
 O p e n M P I

Both implementations exhibit equal scaling behavior
Doubling the number of worker nodes halves the runtime
libcppa 20–30 s faster, despite higher level of abstraction

Dominik Charousset iNET – HAW Hamburg 37

Agenda

1 Introduction
Challenges of Scalable Software
What the Standard Provides

2 The Actor Model & libcppa
Benefits
Actors in C++11
API & Examples

3 Actors vs Threads
4 Performance Evaluation

Overhead of Actor Creation
Performance of N:1 Communication
Performance in a Mixed Scenario
Scaling Behavior of Message Passing

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 38

Conclusion

libcppa performs uniformly well

Broaden range of applications of the actor model
Support for GPGPU programming by integrating OpenCL
Small memory footprint & efficient program execution

Native C++ actor system
Pattern Matching for messages as internal DSL
High level of abstraction without sacrificing performance

Dominik Charousset iNET – HAW Hamburg 39

Conclusion

libcppa performs uniformly well
Broaden range of applications of the actor model

Support for GPGPU programming by integrating OpenCL
Small memory footprint & efficient program execution

Native C++ actor system
Pattern Matching for messages as internal DSL
High level of abstraction without sacrificing performance

Dominik Charousset iNET – HAW Hamburg 39

Conclusion

libcppa performs uniformly well
Broaden range of applications of the actor model

Support for GPGPU programming by integrating OpenCL
Small memory footprint & efficient program execution

Native C++ actor system
Pattern Matching for messages as internal DSL
High level of abstraction without sacrificing performance

Dominik Charousset iNET – HAW Hamburg 39

Conclusion

libcppa performs uniformly well
Broaden range of applications of the actor model

Support for GPGPU programming by integrating OpenCL
Small memory footprint & efficient program execution

Native C++ actor system
Pattern Matching for messages as internal DSL
High level of abstraction without sacrificing performance

Currently ported to RIOT-os1 for embedded HW support

1http://www.riot-os.org/

Dominik Charousset iNET – HAW Hamburg 39

http://www.riot-os.org/

libcppa Facts Sheet

Open source (GPLv2) C++11 actor library
Runs on GCC ≥ 4.7, Clang ≥ 3.2 (Linux + Mac)
Will run on MSVC once it is C++11 complete (runs on MinGW)
Hosted on GitHub
Feedback & contributions always welcome!
Hot topics in the iNET group:

Actors on ARM / embedded systems
Actors & publish/subscribe (multicast)
Message routing & composability

Currently in (preliminary) submission process to Boost!

Dominik Charousset iNET – HAW Hamburg 40

libcppa Facts Sheet

Open source (GPLv2) C++11 actor library
Runs on GCC ≥ 4.7, Clang ≥ 3.2 (Linux + Mac)
Will run on MSVC once it is C++11 complete (runs on MinGW)
Hosted on GitHub
Feedback & contributions always welcome!
Hot topics in the iNET group:

Actors on ARM / embedded systems
Actors & publish/subscribe (multicast)
Message routing & composability

Currently in (preliminary) submission process to Boost!

Dominik Charousset iNET – HAW Hamburg 40

Thank you for your attention!

Developer blog: http://libcppa.org

Sources: https://github.com/Neverlord/libcppa

iNET working group: http://inet.cpt.haw-hamburg.de

Dominik Charousset iNET – HAW Hamburg 41

	Introduction
	Challenges of Scalable Software
	What the Standard Provides

	The Actor Model & libcppa
	Benefits
	Actors in C++11
	API & Examples

	Actors vs Threads
	Performance Evaluation
	Overhead of Actor Creation
	Performance of N:1 Communication
	Performance in a Mixed Scenario
	Scaling Behavior of Message Passing

	Conclusion

